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Abstract 

Similarity of shape features of three-dimensional bodies is of importance in many 
fields. Computational methods that are suitable to provide numerical measures for such 
similarities are expected to find applications in a wide variety of areas. Whereas relative 
measures based on direct pair comparisons are useful, nevertheless, methods that involve 
absolute shape descriptors are expected to be more universally applicable. The general 
"grade of similarity" concept proposed in this study is based on such absolute shape 
descriptors of three-dimensional bodies. The study of similarity of the three-dimensional 
shapes of molecules as represented, for example, by their electronic charge distributions, 
or electrostatic potentials, or simply by their fused spheres Van der Waals surfaces, is 
an important component of modem drug design. A family of topological methods, the 
shape group methods (SGM), have been proposed recently for the study of the shapes 
of formal molecular bodies, evaluating and comparing numerical shape codes for the 
non-visual comparison of molecules by the computer. In this contribution a new, and 
conceptually simpler numerical measure of shape similarity is proposed, applicable for 
the computer evaluation of similarity of arbitrary three-dimensional objects of closed 
surfaces. The technique is suggested for the non-visual, numerical evaluation of shape 
similarity of formal molecular bodies and contour surfaces. 

1. Introduction 

The concepts of similarity index, the degree of similarity, and the associated 
numerical measures proposed for three-dimensional similarity analysis in this study 
are motivated by some of the basic patterns of visual perception of the shape features 
of ordinary objects. We shall use two-dimensional examples in order to introduce the 
main ideas; however, the definitions and the general method are designed for three- 
dimensional applications and are easily generalized for arbitrary finite dimensions. 
Consider two domains D and D '  in the plane. For an observer at a great distance from 
the plane, both domains may appear as mere points, hence their shapes appear 
virtually identical. At a slightly closer distance, one may be able to distinguish their 
shapes, but only some of the most prominent differences in their shapes may be 
detected. At a much closer distance, however, many details may appear and a more 
thorough shape comparison becomes possible. Evidently, the evaluation of their 
similarity is dependent on the level of resolution. If two domains show differences 
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already at a low level of resolution, then they are less similar than two domains which 
appear different only at a much higher level of resolution. Hence, a degree of similarity 
or dissimilarity can be associated with the level of resolution required to detect shape 
differences. 

In this study, a simple and systematic method is suggested that provides a size- 
independent scale for the level of resolution. Based on this scale, definitions for a 
similarity index and for the degree of similarity are proposed. In the following sections, 
we shall derive and give precise definitions of similarity indices and the degree of 
similarity for both the two-dimensional case of planar domains and the three-dimensional 
case of bodies enclosed by closed contour surfaces. The extension of these concepts 
to the shape analysis of abstract, higher-dimensional objects is straightforward and 
will be commented on in the conclusions section of the paper. 

2. The degree of similarity of planar domains 

The comparison of two-dimensional shapes of closed curves and areas enclosed 
by them in the plane is an important task in many areas of natural sciences, including 
chemistry. Experimental observations and chemical measurements, as well as theoretical 
studies, often result in such curves, and their comparisons often lead to important 
insights. For example, in catalysis, the pattern of adsorbed molecules on metal surfaces 
can be described by contour lines [1], and in drug design, the cross-sections of 
molecular contour surfaces can be modeled by such closed curves [2,3]. Some of the 
shape analysis methods are based on graph theory [4] or on homology group theory 
of algebraic topology [5,6]. The latter methods are collectively called the shape 
group methods (SGM) [7-10]. 

In this contribution, we shall follow a different strategy for shape description. 
First, we shall describe the essential idea behind the proposed method in simple 
terms. To this end, we focus our attention on a family of simple curves, called Jordan 
curves, that are suitable for the construction of more complicated curves and patterns 
in the plane. A Jordan curve divides the plane into two parts: a bounded domain (the 
interior of the Jordan curve) and the remaining, unbounded subset of the plane (the 
exterior of the Jordan curve). 

Consider a Jordan curve J in the plane and the planar domain D that is the 
interior of J. The interior of J can be modeled by square-cell configurations; for 
example, one may place J on a square grid and consider the family of all squares 
falling within the interior of J. Subject to some constraints (see below), these 
square-cell configurations are called animals, and have been used in various appli- 
cations [11-16]. In the present context, we use animals to provide a natural scale 
for the level of resolution of shape descriptions. The smaller the squares of the grid, 
the better the resolution of the representation of J by the animals. By approximately 
filling up the interior of J by animals at various levels of resolution, a shape 
characterization of the continuous Jordan curve J can be obtained by the shape 
characterization of animals. The animals contain a finite number of squares (cells); 
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hence, the latter shape characterization can be accomplished using the methods of  
discrete mathematics. Hence, one obtains an approximate, discrete characterization 
of the shape of a Jordan curve, that is, the shape of a continuum. The level of  resolution 
can be represented indirectly by the number of cells of  the animals. In particular, we 
show below that the number of  cells required to distinguish between two Jordan 
curves provides a numerical measure of  their similarity. 

In order to formulate the above ideas in precise terms, we need some definitions, 
which are reviewed below. Some properties and applications of  animals and some 
of  the relevant background can be found in refs. [4, 11-20].  

A mesh on a square lattice is a family of  squares forming a rectangular part 
of  the lattice. In graph-theoretic terms, a mesh M,,,,n is defined [14] as the Cartesian 
product Pm x Pn of two nontrivial paths Pm and Pn- The notation M n may be used for 
the mesh P,, x P,,. A Jordan cycle C of a mesh Mn is a cycle that is a subgraph of  
M n and has a vertex degree of two for all of its nodes. A subgraph A of  a mesh M n 
is called an animal if it contains all the nodes and edges of  mesh M,, that fall on or 
within the interior of  a Jordan cycle C of M n. Each 4-cycle C 4 contained in animal 
A is called a cell c of  A. The Jordan cycle C is the perimeter of  A. As a point set, 
the perimeter C of A is a single Jordan curve, denoted by J(A). The perimeter J(A) 
contains all edges of A which are on exactly one of  its cells. Note that other, more 
general definitions of animals are also known which allow for multiply connected 
square-cell configurations. 

Our goal is to characterize the shape of a Jordan curve J and its interior D by 
the shapes of animals that fit within J. When placing an animal A within D, the relative 
orientation of J and mesh M(A) is not fixed, that is, J and A may be rotated with 
respect to one another. (The case with orientation constraints leads to the orientation- 
dependent shape characterization that is of  importance for molecules in external 
fields, for example, for drug molecules within enzyme cavities [10]. The corresponding 
similarity measures are easily derived from the ones of the present study, and these 
problems will not be considered here.) 

Clearly, by choosing a small enough size s for the length of the side of  the 
square cells, any finite animal can fit within the given planar domain D. Evidently, 
whether an animal A fits within the interior D of a given Jordan curve J depends on 
the relative size of J and the cells of  the animal. For a given Jordan curve J and cell 
size s, there exists a countable family F(J, s) of animals which fit within D. If the 
size s is too large, then this family is empty. With reference to J and s, the members 
Ai(J, s) of this family F(J, s) are the inscribed animals of D. 

For a given J and s, there exists a maximum number n of  cells for inscribed 
animals. The subset F(J, s, n) of F(J, s) contains all animals Ai(J, s, n) of  the maximum 
possible cell number n. Without introducing orientation constraints, this number 
n = n(J, s) depends only on the given Jordan curve J and cell size s. The perimeters 
of  these Ai(J, s, n) animals are also Jordan curves, approximating the original Jordan 
curve J. The smaller the cell size s, the better the resolution and the better the 
approximation. Since a small change of  cell size s does not necessarily change 
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n, one may consider size ranges. For the given J, we find the maximal interval s(J, n) 
= [s(n, 1), s(n, 2)) within which the n value is invariant, and we generate the union 
F(J, n) of all F(J, s, n) animal families for this interval: 

F(J ,n)= • F(J,s,n).  (1) 
s(J,n) 

The family F(J, n) contains all n-cell animals Ai(J, n) inscribed within the interior 
D of  Jordan curve J, with the maximum number n of  cells for the given range s(J, n) 
of  cell size s. Since on the given level of  resolution no animal with more cells can 
be inscribed within D, these animals are the n-cell interior filling animals of  the 
Jordan curve J. 

In general, the n-cell animal Ai(J , n) inscribed in Jordan curve J is an interior 
filling animal of J if and only if no animal of  the same cell size s and more than 
n cells can be inscribed in J. For example, none of the interior filling animals 
Ai(J, n) can be enlarged by a cell and still fit within the interior J as long as s E s(J, n). 

The level of  resolution depends on the relative size of  D = Int(J) and the 
cells c. This relative size is implied by the maximum number n of  cells which fit 
within domain D. In other words, the continuum of size range s(J, n) is replaced 
by a discrete descriptor, integer n. For this reason, in the F(J, n) and Ai(J, n) notations 
the cell size information is not given directly. 

In fig. 1, three Jordan curves Yl, J2, and J3 are shown, with some of  their 
interior filling animals. At level n = 3, there is only one interior filling animal, 
common to all three curves. Hence, at this level of  resolution their shapes appear 
the same. At level n = 4, however, only the two curves Jl  and J2 have the given 
common interior filling animal, which is different from the one for the curve J3. 
At a higher level, for example at n = 18, the interior filling animals of  all three 
curves are necessarily different. Since it requires a higher level of  resolution to 
distinguish the shapes of  the pair J1, J2 than that needed for either of  the pairs J1, 
J3 and J2, J3, we conclude that the closest similarity is between the shapes of  J l  and 
J2. Most human observers would find the same conclusion based on visual inspection. 
These conclusions based on the figure suggest a more precise treatment for the 
evaluation of  similarity, as given below. 

The family F(J,  n) of  all interior filling animals Ai(J, n) of  the Jordan curve 
at level n provides an absolute shape characterization of  the curve J and its interior 
D. The F(J, n) sets are also suitable to introduce a relative measure for shape 
similarity of  two Jordan curves Jl and J2. At a given level n, the intersection 

F(J1, J2, n) = F(J1, n) N F(J2, n) (2) 

contains all the common interior filling animals Ai(J , n). 
We say that Jordan curves J1 and J2 are dissimilar at and above cell number 

n c if  each set F(J I, J2, n) is empty if n > n c. 
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'Jl 

Fig. 1. Some interior filling animals of three planar domains D x, D 2, and D 3 
of different shapes. Note that the greatest degree of similarity is found between 
domains D 1 and D 2, in agreement with expectation based on visual inspection. 

The similarity of the shapes of  Jordan curves Jland J2 at the level of  resolution 
n can be characterized by the number f(J1, J2, n), defined as 

f(J1, J2, n) = card(F(J 1, J2, n))/card(F(J1, n) u F(J 2, n)), (3) 

that is, as the ratio of  the number of common interior filling animals and the total 
number of  interior filling animals of  the two curves. In the above notation, card(X) 
is the cardinality of  the countable set X. 
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Note that for special Jordan curves Jl and J2, and for special n values, the 
set F(J 1, n), or set F(J 2, n), or both, may be empty. If both sets are empty, then for 
these n values no number f(J1, J2, n) is defined. The possible values of  f(J1, -/2, n) 
range from 0 to 1, indicating the lower and upper bounds of similarity between two 
Jordan curves J1 and J2 at the given level n of  resolution. 

The shape comparison is based on interior filling animals, and it is independent 
of  the relative sizes of the Jordan curves J~ and Jz. Consequently, the numbers 
f(J~,.12, n), as well as all other shape and similarity descriptors of  this study, are 
also independent of the sizes of  J1 and J2. 

The family of all nonzero f(J1, J2, n) numbers provides a detailed description 
of  similarity, but such a set of  numbers is inconvenient for comparisons. We shall 
take advantage of the n-dependence of numbers f(Jl ,  J2, n) in order to devise a 
single numerical similarity measure. The number f(J1, J2, n) is not necessarily a 
monotonic function of n, although for any two different Jordan curves J1 and ./2, 
the overall tendency is a decrease of f(J1, J2, n) with n. In particular, it is possible 
that f(J1, J2, n) = 0 and f(Jx, J2, n ' )  > 0, where n < n'.  This justifies our choice 
for the similarity index, defined below: 

The similarity index io(J 1, J2) of  two Jordan curves J1 and J2 is the smallest 
nc value at and above which all interior filling animals of  Jordan curves Jx and J2 
are different, that is, 

= I min{ nc : F(J1 ,J2, n) is empty if n > nc }, if the minimum exists; 
io(J1,J2) [oo otherwise. (4) 

If the shapes of two Jordan curves J1 and 3"2 are identical (that is, if they 
can be obtained from one another by scaling), then no finite n c value exists and 
io(J1, J2) = oo For curves J1 and J2 of non-identical shapes, the more similar their 
shapes, the greater the cell number n of the largest common interior filling animals. 
Consequently, the similarity index i0(J1, J2) is a large number if the two Jordan 
Curves J1 and J2 are very similar, and it is a small number for highly dissimilar 
Curves. 

The degree of dissimilarity dUl, J2) is defined in terms of  io(J 1, J2) as follows: 

d(J1, J2) = 1/(io(J1, J2) - 2). (5) 

The smallest cell number n at which there exist different animals is three, which 
justifies the inclusion of the number two in the denominator. The degree of dissimilarity 
d(J1, -/2) may take values from the [0, 1] interval, greater values indicating greater 
dissimilarity. If the Jordan curves Jl and J2 have identical shapes, then d(J 1, J2) = 0. 

This leads us to the degree of similarity s(J 1, -I2), defined as 

s(Jl, J2) = 1 - d(J l, .12). (6) 
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If the Jordan curves J1 and J2 have identical shapes, then their degree of similarity 
s(J1, J2) = 1, otherwise s(J~, J2) is a smaller non-negative number. 

The similarity index io(J l, ./2) and the degree of similarity s(J l, J2) of two 
Jordan curves J~ and J2 are of general applicability for the evaluation of similarities 
of planar domains. In chemistry, these tools for the quantification of similarity are 
applicable in a wide variety of fields, for example, for the shape comparison of 
curves defined as cross-sections of molecular contour surfaces, or contours of molecular 
aggregates, or patterns of molecules adsorbed on metallic surfaces, important in 
studies of catalysis. 

In the following section, the shape characterization technique and the concept 
of degree of similarity will be extended to three-dimensional objects such as formal 
molecular bodies and molecular boundary surfaces, using polycubes as the three- 
dimensional analogues of square cell configurations. 

3. Polycubes and the degree of similarity concept for three-dimensional bodies 

We shall consider the problem of shape comparison of three-dimensional bodies 
in the context of molecules; however, the techniques and the formal measures proposed 
for similarity are applicable to general bodies. 

Various topological techniques have been proposed earlier for the analysis of 
shapes of molecular contour surfaces and formal molectdar bodies (see, for example, 
refs. [2,3,7-10, 21-24]). Among these surfaces, the isodensity contours G(a) at electronic 
density value a, and the bodies B(a) enclosed by them, are of special importance in 
rationalizing chemical and biochemical processes. By analogy with the two-dimensional 
similarity analysis of Jordan curves and interior filling animals, described above, we 
shall develop a three-dimensional technique based on the generation ofpolycubes enclosed 
by the contour surfaces G(a). 

A connected arrangement of a finite number n of impenetrable cubes C of uniform 
size is called a polycube if only three types of contacts between cubes are allowed: 
common face, common edge or common vertex. If n > 1, then each cube of the polycube 
P must have a face contact with another cube of P. 

One may regard polycubes as parts of a cubic lattice. The smallest rectangular 
block of the cubic lattice that contains polycube P is called the mesh M(P) of P. 

The polycubes considered in this study fulfill the following three additional 
restrictions: 

(i) if there is an edge contact between two cubes C and C' of P, then there must also 
be a face contact' between C and C', or there must exist a cube C" of P having 
face contact with both C and C'; 

(ii) if there is a vertex contact between two cubes C and C' of P, then there must also 
be either an edge contact between them, or there must exist two cubes C" and 
C'" of P with face contact to each other and C" having face contact to C and C'" 
having face contact to C'; 
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(iii) the polycube P, as a single body, is topologically equivalent to the three-dimensional 
body it represents. In the most common case, a formal molecular body B(a) is 
topologically equivalent to a solid ball; however, toroidal or more complicated 
topologies are also possible. 

Conditions (i) and (ii) ensure that the polycubes are facewise connected, whereas 
condition (iii) is the natural requirement that the three-dimensional body and its representations 
at various levels of resolution are not incomparably different. 

By analogy with the perimeters of animals and Jordan cycles, the surface G(P) 
of a polycube P is the point set union of all those faces of the cubes C of P that are 
on precisely one cube. The surfaces of polycubes will be used to approximate molecular 
contour surfaces G(a), and to characterize the shapes of the formal molecular bodies 
B(a) enclosed by them. 

The size of the cubes C is characterized by the uniform edge length s. By gradually 
decreasing s and increasing the number n of cubes in the polycube P inscribed within 
G(a), one can approximate the formal molecular body B(a) at increasing levels of  resolution. 

Consider a given molecular contour surface G(a). If the size s of  the cubes is 
chosen small enough, then any finite polycube P can fit within G(a). As in the two- 
dimensional case, we do not consider orientation constraints and we assume that the 
contour surface G(a) and polycube P may be rotated with respect to one another;, the 
relative orientation of G(a) and mesh M(P) is not fixed. Hence, in our present model, 
the identity of a polycube is independent of its orientation. We consider two polycubes 
P and P '  identical if and only if they can be superimposed on one another by translation 
and rotation in 3D space. The polycube method of shape analysis with orientation 
constraints, suitable for the study of molecular recognition and shape problems in external 
fields, will be discussed elsewhere. 

If the molecular contour surface G(a) and cube size s are given, then there exists 
a countable family F(G(a), s) of  polycubes which fit within G(a). If the size s is too 
large, then the family F(G(a), s) is empty. The polycubes Pi(G(a), s) of this family are 
the inscribed polycubes of size s. For a given size s and contour surface G(a), there exists 
a maximum number n(G(a), s) of cubes for inscribed polycubes. A small change of the 
electronic contour density parameter a may leave the value n(G(a), s) invariant. Similarly, 
for a fixed a value, a small change of cube size s does not necessarily change the value 
n(G(a), s); hence, n(G(a), s) is invariant for some size range, denoted by s(G(a), n). 
Polycubes Pi(G(a), n) with the maximum number n = n(G(a), s) of cubes for the given 
range s(G(a), n) are the n-cube interior filling polycubes of the contour surface G(a). 

In simpler terms, a polycube Pi(G(a), n) is an interior filling polycube of the contour 
surface G(a) if and only if no polycube P of the same cube size s and of n + 1 cubes 
can be inscribed in G(a). 

We shall use the shape properties of interior filling polycubes Pi(G(a), n) inscribed 
in molecular contour surfaces G(a) in order to assess the similarity of the G(a) contours 
and the formal molecular bodies B(a) enclosed by them. In order to use levels of  resolution 
scaled relative to the molecular size, we do not use the absolute size parameter s directly. 
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At a given size s, one can provide only a few details of  a small object of  delicate features, 
but the same cube size s can be sufficiently descriptive for a large object of  cruder 
features. One obtains more comparable characterizations if both small and large objects 
are described by the same number of cubes. Consequently, it is more suitable for our 
purposes if each level of  resolution is defined by n, which depends on the relative size 
of the object as compared to the cube size s. That is, the formal level of  resolution at 
which the similarities of  various G(a) surfaces and B(a) bodies are analyzed is represented 
in absolute terms by the cube size s, and in a size-independent way by the number n 
of cubes of  the interior filling polycubes Pi(G(a), n). 

Let us denote the family of all interior filling polycubes Pi(G, n) of the molecular 
contour surface G at level n by F(G, n). This set F(G, n) provides an absolute shape 
characterization of G and the body B enclosed by it. By analogy with the two-dimensional 
case, we may use these F(G, n) sets to introduce a relative measure for shape similarity 
of  two molecular contour surfaces G~ and G 2. These surfaces may belong to two different 
molecules, or to the same molecule with two different contour density values a 1 and a 2. 
At a given level n of resolution, the intersection 

F(G 1, G 2, n) = F(G I, n) n F(G 2, n) (7) 

contains all the common interior filling polycubes Pi(G, n). 
We shall use the term dissimilar in the following context: the contour surfaces 

G x and G2 (and the bodies B~ and B 2 enclosed by them) are dissimilar at and above 
cube number n c if each set F(G 1, Gz, n) is empty if n > no. 

At each level of  resolution n, we may characterize the similarity of the shapes 
of  contour surfaces G 1 and G 2 by the number f ( G  1, G 2, n), defined by 

f(J1, "12, n) = card(F(G 1, G 2, n))/card(F(G 1, n) u F(G 2, n)). (8) 

For special n values and special contour surfaces G I and G 2, both sets F(G1, n) 
and F(G 2, n) may be empty; for these n values, no number f(G1, G2, n) is defined. 
If the number f ( G  1, G 2, n) exists at the given level n of  resolution, then it ranges 
from 0 to 1, where the extreme values correspond to the lower and upper limits of  
similarity between the two contour surfaces G~ and G 2. 

We emphasize that the shape comparison is based on interior filling polycubes 
containing the same number of cubes; hence, it is independent of  the relative sizes 
of  the contour surfaces GI and G 2. 

Instead of using the family of  all nonzero f(G1, G2, n) numbers for a detailed 
description of similarity, we shall use a single numerical similarity measure. By 
analogy with the two-dimensional case, we introduce the similarity index io(G 1, G2), 
defined below: 

The similarity index io(G 1 , G2) of two contour surfaces G 1 and G 2 is the smallest 
nc value at and above which all interior filling polycubes of  contour surfaces G~ and 
G 2 are different, that is, 
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Imin{no : F(G1 ,G2, n) is empty if n >_ no}, if the minimum exists;(9 ) 
io (G 1, G 2  ) = L otherwise. 

If  two contour surfaces G x and G 2 c a n  be obtained from one another by scaling, 
then we say that their shapes are identical. For contour surfaces G~ and G 2 of identical 
shapes, no finite n c value exists and io(G l, G2) = ,,o. For contour surfaces G l and 
G 2 of  non-identical shapes, if the cell number  n of the largest c o m m o n  interior 
filling polycubes is a larger number, then we perceive them as exhibiting greater 
similarity. This is reflected in the similarity index io(G 1, G2), which is a large integer 
number  if the two contour surfaces G1 and G 2 are very similar, and a smaller integer 
if they are highly dissimilar. 

We define the degree of dissimilarity d(G 1, G2) as follows: 

d(G 1, G 2) = 1/(io(G 1, G~) - 2). (10) 

The smallest cube number  n at which there exist different polycubes is three; this 
is reflected by the inclusion of the number  two in the denominator.  The degree of  
dissimilarity d(G1, G2) takes values from the [0, 1] interval, greater values indicating 
greater dissimilarity. If the contour surfaces G~ and G 2 have identical shapes, then 
their degree of dissimilarity is zero, d(G 1, G2) = 0. 

The degree of  similarity s(G1, G 2) of two contour surfaces G I and G 2 is defined 
as 

s(G 1, G2) = 1 - d(G 1, G2). (11) 

If the two contour surfaces G1 and G 2 have identical shapes, then their degree of 
similarity s(G 1, G2) = 1, otherwise it is a smaller non-negative number.  

4. Conc lus ions  

The concepts of  two- and three-dimensional similarity indices and the degree 
of similarity have been motivated by potential chemical applications, both in theoretical 
chemistry and in applied fields such as pharmaceutical drug design. The underlying 
principle is the replacement of a continuum in the plane or in the three-dimensional  
space by a discrete representation in terms of simple objects, where the construction 
of  these simpler objects is carried out on various levels of resolution. The level of  
resolution required to detect various shape features and similarities leads to the 
numerical  similarity index and to the degree of similarity. A similar principle may 
be applied to the development  of a concept of the degree of chirality, to be described 
elsewhere [ 19, 20]. 

Note that these concepts are not restricted to chemistry, and are applicable 
to more general problems of shape analysis. 

The index of similarity and the degree of similarity are easily extended to m- 
dimensional abstract objects of continuous (m - 1)-dimensional boundaries by replacing 
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the polycubes with m-dimensional poly-hypercubes obeying a face-connectedness 
condition for their (m - 1)-dimensional faces. Applications of the higher dimensional 
case to a similarity analysis of multidimensional potential energy hypersurfaces and 
their reaction globe representations [25] will be presented elsewhere. 
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